Д-Р ГАДИ ШНАЙДЕР

РОФЕССИОНАЛЬНО

ABTOP:

Д-Р ГАДИ ШНАЙДЕР (GADI SCHNEIDER)

Доктор стоматологии, специалист по пародонтологии Научный консультант компании Alpha-Bio тес

Д-р Шнайдер получил диплом доктора стоматологической медицины в Еврейском университете Хадасса.

Окончил стоматологический факультет в 2000 г. в Иерусалиме.

Затем д-р Шнайдер продолжил обучение в аспирантуре того же факультета по специальности пародонтология и получил диплом по пародонтологии в 2004 г. В том же 2004 г. ему был выдан сертификат Европейской федерации пародонтологов, после чего он продолжил работу в качестве преподавателя и лектора в Иерусалиме, на стоматологическом факультете Еврейского университета Хадасса.

В должности научного консультанта и лектора Учебного центра компании компании Alpha-Bio тес д-р Шнайдер проводит семинары и курсы по имплантологии и имплантационной хирургии для своих коллег-стоматологов. Д-р Шнайдер также ведет частную практику и специализируется на пародонтологическом и имплантологическом лечении.

ИНТЕЛЛЕКУАЛЬНО

ПРОВЕДЕНИЕ НАПРАВЛЕННОЙ КОСТНОЙ РЕГЕНЕРАЦИИ ОДНОВРЕМЕННО С УСТАНОВКОЙ ИМПЛАНТАТОВ

ABTOP:

Д. СТОМ. Н., СПЕЦИАЛИСТ

ΠΟ ΠΑΡΟΔΟΗΤΟΛΟΓΙΙΙ

Д-Р ГАДИ ШНАЙДЕР

ТЕРМИНЫ

РЕГЕНЕРАЦИЯ:

Восстановление поврежденных или утраченных тканей, идентичных исходным по строению, морфологии и функции.

РЕКОНСТРУКЦИЯ:

Восстановление поврежденных или утраченных тканей, отличных от исходных (рубец или соединительная ткань).

ОСНОВЫ: КОСТНОЗАМЕЩАЮЩИЕ ПРЕПАРАТЫ – ГРУППЫ, ТИПЫ И СВОЙСТВА

СВОЙСТВА:

ОСТЕОГЕННЫЕ

- Активная стимуляция • Солержит остеогенные
- Содержит остеогенные клетки
- Формирование кости происходит в самой костной ткани

ОСТЕОИНДУКТИВНЫЕ

Активная стимуляция
 Формирование
кости происходит в
других тканях за счет
индуктивной способности
родительских клеток
становиться остеогенными
и формировать кость

ОСТЕОКОНДУКТИВНЫЕ

- Пассивная стимуляция • Способны играть
- роль матрицы для прикрепления, разрастания и воспроизводства клетки кости, что стимулирует формирование кости

ГРУППЫ И СВОЙСТВА:

АУТОГЕННЫЕ (ДОНОР-ПАЦИЕНТ)

Тазовая кость, подбородок, нижняя челюсть

АЛЛОГЕННЫЕ (ДОНОР-ДРУГОЙ ЧЕЛОВЕК)

Донорский орган, (деминерализованный) лиофилизированный костный трансплантат (DFDBA и FDBA)

КСЕНОГЕННЫЕ (ЖИВОТНОГО ПРОИСХОЖДЕНИЯ)

Бычий, свиной, конский материал

АЛЛОГЕННЫЕ (СИНТЕТИЧЕСКИЕ)

фосфат / сульфат кальция и другие полимеры, гидроксиапатит, трикальщийфосфат, CAS, GALSS

СВОЙСТВА:

Остеогенные Остеокондуктивные Остеоиндуктивные Остеокондуктивные Остеоиндуктивные (только деминерализованный лиофилизированный костный трансплантат)

Остеокондуктивные

Остеокондуктивные

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ:

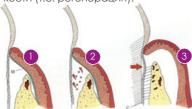
- В теории: золотой стандарт
- Ускоренная резорбция
- Дополнительная зона хирургического вмешательства
- Высокая травматичность
- Требует высокой квалификации специалиста
- Ограниченная доступность

DFDBA

- Рекомендуется только при небольших или средних дефектах, синус-лифтинге в сочетании с другими материалами
- Ускоренная резорбция (2 – 4 мес.)

FDBA

- Средняя скорость резорбции (6 – 15 мес.)
- Для всех дефектов, синуслифтинга


- Высокая устойчивость к леформации
- Низкая скорость
- резорбции
 Лидер рынка
 Высокая
- кондуктивность
 Подробные
 научные
- исследования
 Эффективность во всех процедурах
- Средняя скорость резорбции
- Эффективность при синуслифтинге
- Эффективность при проведении костной регенерации в сочетании с другими материалами

ОБЩИЕ СВЕДЕНИЯ

Направленная регенерация костной ткани основывается на методе направленной регенерации тканей в пародонтологии. В 1976 г. было высказано предположение о том, что характер заживления раны зависит от типа клеток, заселяющих рану (Melcher 76).

Впоследствии в ходе ряда исследований удалось обнаружить, что за направленную регенерацию тканей отвечают клетки периодонтальной связки, а предотвращение соединительнотканнной и эпителиальной инвазии в рану за счет установки физического барьера (мембраны) позволяет клеткам периодонтальной связки заселить поверхность корня зуба и способствовать формированию цемента, периодонтальной связки и кости (т.е. регенерации).

Установка Проникновение мемлраны клеток периодонтальной СВЯЗКИ И КОСТИ

Кость пемент и периодонтальная Связка

Было также определено, что при замятии мембраны и уменьшении пространства между ней и зубом формируется только цемент и незначительный объем кости. Однако при создании за счет мембраны большего пространства наблюдалось формирование большего объема кости (Gottlow 84)

Общий вывод из ряда работ ЗАКЛЮЧАЛСЯ В ТОМ, ЧТО ВОЗМОЖНО экстраполировать принципы уже эффективной направленной тканевой регенерации на регенерацию изолированно костной ткани через формирование пространства и установку физического барьера, которые совместно позволяют проникать в это пространство только костеобразующим клеткам и заполнять его костью. На настоящий момент на эту гипотезу опираются методики направленной костной регенерации. Для проверки гипотезы было проведено несколько клинических исследований, в рамках которых были смоделированы двусторонние костные дефекты, причем мебрана **УСТАНАВЛИВАЛАСЬ ТОЛЬКО НА ОДНУ ИЗ** сторон. Результаты исследований однознано указывают на то, что новая кость формировалась только с той стороны, на которую была наложена мембрана, в то время как с другой стороны формировались только мягкие ткани (Dahlin 88, 89), Kastapoulus & Karring 94, Karring 94).

ормирование ново вокруг титанового винта.

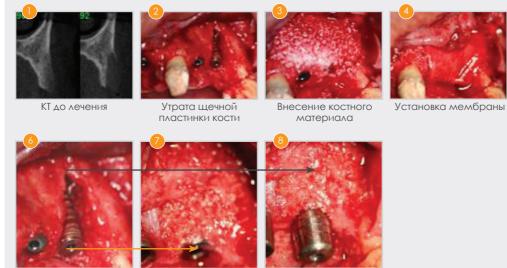
Формирование мягких ткагнй вокруг титанового винта.

ПРОЦЕСС ФОРМИРОВАНИЯ КОСТИ

Гистологические данные указывают на то, что формирование кости под мембраной происходит по тем же принципам и проходит те же фазы, что и при естественном образовании кости в лунке зуба после удалеия, а именно:

- 1. Образование кровяного сгустка под прикрытием мембраны
- 2. Образование зернистой ткани
- 3. Образование незрелой кости
- 4. Образование ламеллярной кости
- 5. Ремоделирование кости

Весь процесс занимает от 4 месцев до полугода (Schnek 94).



Незрелая кость

Ламеллярная кость

СЛУЧАЙ №1.

клинический Направленная регенерация кости вокруг имплантата SPI - 23 с применением бычьей кости и коллагеновой мембраны

До

Через 6 месяцев

Через 6 месяцев

Первичное закрытие

КЛИНИЧЕСКИЕ ИССЛЕДОВАНИЯ

Клинические исследования по сравнению имплантатов, **УСТОНОВЛЕННЫХ В КОСТЬ.** сформированную по методу регенерации, с имплантатами, установленными в

естественную кость, показали, что:

- в обоих случаях наблюдаются сходные рентгенологические и гистоморфометрические черты
- в обеих ситуациях имеется схожая плотность контакта между костью и имплантатом (BIC)
- для обоих сценариев характерна одинаковая степень резорбции костного материала (Fritz & Reddy, 2001; Zitman, 2001; Hammerle, 2003)

ПРОВЕДЕНИЕ НАПРАВЛЕННОЙ КОСТНОЙ РЕГЕНЕРАЦИИ С ОДНОВРЕМЕННОЙ УСТАНОВКОЙ

При проведении костной регенерации одновременно с установкой имплантата следует соблюдать следующие принципы:

- Первичная стабильность имплантата
- Идеальное расположение имплантата для последующей реабилитации
- Правильно подобранные размер и форма дефекта для выполнения первых двух условий.

ПРИНЦИПЫ НАПРАВЛЕННОЙ КОСТНОЙ РЕГЕНЕРАЦИИ НА ПРИМЕРЕ ИМПЛАНТАТА 22

В целом ряде публикаций клинических слуаев и научных исследований Д. Бузер (Buser 1995) предложил хирургический протокол, основанный на 7 принципах и направленный на получение предсказуемых результатов при проведении направленной тканевой регенерации:

1. Первичное закрытие мягких тканей для предотвращения обнажения мембраны достигается благодаря правильной технике выполнения разрезов и отслаивания лоскута.

Применение вертикальных разрезов

2. Установка имплантата в идеальном положении для последующей реабилитации

3. Препарирование кости – декортикация – направлена на то, чтобы дать возможность клеткам-предшественницам попасть из костного мозга в зону дефекта. Ряд научных статей, опубликованных в последние годы, продемонстрировали, что декортикация не является обязательным условием достижения предсказуемых результатов

4. Создание и сохранение подмембранного пространства, которое должно предотвратить деформирование мембраны внутрь дефекта, обепечивается за счет применения костезамещающих препаратов или других способов поддержки мембраны

Замещение щечной костной пластинки

СЛУЧАЙ №2.

КЛИНИЧЕСКИЙ Направленная регенерация кости вокруг имплантатов SPI 22 – 23 – 24 с бычьей костью и коллагеновой мембраной

Расположение

Расположение

Утрата шечной кости

Внесение костного материала

Костный материал

Укладка мембраны

Первичное закрытие

Ортопантомограмма

До

Спустя 6 мес.

- 5. Плотная подгонка и фиксация мембраны шовным материалом или фиксация ее на костный материал штифтами с целью:
 - предотвратить проникновение мягких тканей в зону дефекта
 - предотвратить смещение мембраны и избежать разрастания под ней мягких тканей.

резорбируемым мембраны для полного шовным материалом прилегания

6. Обеспечение первичного закрытия за счет высвобождающих разрезов и ушивания.

Высвобождающие разрезы

7. Соблюдение реабилитационного срока от 6 до 7 мес. для максимального заживления и заполнения костью.

выводы

- Направленное замещение кости путем регенерации представляет собой эффективную и предсказуемую процедуру
- Более 90% успешных результатов при двухлетнем контроле состояния 656 имплантатов (Nevins M, Int. J. Perio Restor Dent 98, Lorenzoni, COIR 99, Dahlin, COIR 91)
- 90-100% заполнения дефекта костью под мембраной спустя 6 -8 mec. (Long N.P.: COIR 94:5, 92-97)
- Растущее число публикаций в профессиональных изданиях указывает на то, что резорбируемые мембраны дают аналогичные результаты по сравнению с нерезорбируемыми мембранами при проведении латеральной направленной регенерации кости (Hammerlee, C.H.F.: Periodontology 2000:Vol 33,2003:36-53)
- По параметрам успешности имплантационного лечения и плотности контакта между имплантатом и костью разница между регенерированной костью и естственной костью отсутствует (Zitman NU, JOMI 2001:16:355-366)

КЛИНИЧЕСКИЙ СЛУЧАЙ №3

Направленная регенерация кости вокруг имплантатов DFI с бычьей костью и коллагеновой мембраной

Расположение

Расположение

Утрата щечной кости

Внесение костного материала


Установка мембраны

Первичное закрытие

До

Спустя 6 мес.

www.alpha-bio.net

Продукция компании Alpha-Bio тес имеет официальное разрешение на маркетинговое продвижение в США и имеет сертификат ЕС в соответствии с Директивой Совета стран Европы 93/42/ЕЕС и поправкой 2007/47/ЕС. Компания Alpha-Bio тес выполняет стандарт ISO 13485:2003 и следует канадской системе соответствия медицинского оборудования (СМDCAS).

Alpha-Bio Tec Ltd.

7 ул. Хатнуфа, а/я 3936, Кирьят Арье, Петах Тиква 49510, Израиль T. +972.3.9291000 | Ф. +972.3.9235055 sales@ alpha-bio.net

Международные контакты

T. +972.3.9291055 | Ф. +972.3.9291010 export@alpha-bio.net

EC REP MEDES LIMITED

5 Бомонт гейт, Шенли хилл, Радлетт, Хертс WD7 7AR. Великобритания Т/Ф. +44.192.3859810